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Abshact. The effecl of structural disorder on the first-order Raman scattering in glasses is 
studied bv cemrbation series aDDroxima6ons to the werazed Green function of an anl)roDriatelv .. .. - .. . . 
chosen model system. The proposed theoretical approach is applied to calculating the Raman 
speara of NazO-Si02 glass systems on the basis of the disorder-modihed spechum of a Si207 
dimer. 

1. Introduction 

Raman spectroscopy has been widely used for studying the structure of both crystalline 
materials and glasses. While in the former case well developed theoretical methods for 
treating the Raman spectra exist, the latter are much more difficult to investigate owing to 
the absence of translational symmetry. Most papers on the Raman spectroscopy of glasses 
published so far have reported more or less empirical studies in which the strategy is to vary 
systematically the glass composition in order to follow the corresponding tendencies in the 
structure variation. At the same time, there is a considerable necessity in materials science 
and geology for even semiquantitative methods to analyse Raman spectra of glasses. 

The theoretical methods used for calculating the Raman spectra of glasses are usually 
different in the various spectral ranges. In the low-frequency range (below 100 cm-I) the 
so-called mode-coupling theory [ 1.21 provides excellent fits to experimental data for a large 
variety of glasses. However, this approximation, which is continuous in character, is not 
suitable for modelling the spectra at higher frequencies originating from optical modes. 

All theoretical approaches developed so far for studying the Raman spectra of glasses 
in the intermediate and high-frequency ranges (200-1500 cm-') are based on their relation 
to the Green function of the system and to the vibrational density of states (Voos) [3- 
51. The approximations usually employed such as the central force interactions between 
nearest neighbours only [6,7], Bethe lattice boundary conditions [8,9] or light scattering 
by individual bonds [lo, 111, although simplifying considerably the treatment, still either 
remain rather complicated or do not provide satisfactory results in many cases. 

The aim of the present paper is to consider the effect of structural disorder on the first- 
order Raman scattering of glasses in the intermediate and high-frequency spectral ranges. 
For this purpose, self-consistent perturbation approximations for the complex self-energy 
part of the averaged Green function of previously specified structural units are proposed. 
These approximations, being computationally much simpler than those used so far, can 
be easily modified for semiquantitative analysis of the Raman spectra of a large variety of 
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glasses. Disorder-modified Raman spectra of Si207 dimers are also discussed as an example 
since this structural unit is known to be suitable for modelling the M20Si02 glass systems 
extensively studied by Raman spectroscopy. 

2. Calculation of the Raman spectra 

The intensity of the Raman spectrum of a glass can be presented [3,4,12] in the form 

~ ( w )  c( (20)-'(w+ Y) '~(~)CC,P(W)D~(~)  (1) 
P 

where w is the anti-Stokes Raman shift, a is the scattered-light polarization index, Cl(w)  
is a coupling constant, Y is the frequency of the incident light, n(w) = [exp(pw) - 11-' is 
the averaged number of phonons with frequency w ,  and Dp(w) is the VDOS in the band p, 
which contains modes with similar atom vibrations. The coupling constants C:(w) for an 
anisotropic Raman spechum as well as for parallel (HH) and transverse (w) polarizations 
of the scattered light are given by [ 111 

Cgo,W = C&(w) = 7 E 3 w )  + 45A:(w) C&(w) = 6,3330) (2) 

where A@) and Ei(w) are the polarizability tensor invariants: 

A p ( 4  = ~ ( P P ,  + P& + P&) 
(3) 

Ej(w)  = i [ ( P f ,  - P&)2 + (PP1 - Pi$ + (P& - P&)21 + ~[(PPz)'  + (P[3)' + (P&)*]. 

In equation (3) the frequency-dependent polarizability tensor of the pth band is 

P;(w) = Cni,j.N(~) (4) 
i 

where q j , ,  is the first derivative of the i j t h  component of the dielectric tensor x with 
respect to the lth component of the frequency-dependent eigenvector UP(w) of the pth 
band 141. Equation (4) implicitly states that there is no correlation between the mechanical 
and the electrical disorder in the glass system. 

Using atomic polarizabilities defined as in [13] we shall express the polarizability tensor 
elements p;(w), according to the model for Raman scattering by independent bonds [5],  
through 

In equation (5). V is the volume of the system, (i. j )  and p are the Cartesian and band 
indices, respectively, Ab:@) = Up(w) -U,"(.) ( I ,  k number the atoms forming the mth 
bond), Q"' is a unit vector parallel to the mtb bond, A; and A: are the bond polarizabilities 
caused by the non-bonding and bonding electrons, respectively, of the atoms in the bond 
and the summation is over all bonds in the system. It should be noted that A; and the 
transverse polarizability AI: in equation (5) do not depend on the bond length r". while A: 
is proportional to 
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3. Modelling of the Raman spectra 

To obtain the Raman intensity from equation (1) we shall propose models below 
for calculating C,'(w) and Dp(w) based on the so-called corresponding system (cs) 
approximation. 

3.1. Corresponding system approximation 

We assume that for each glass system there exists a a such that there is one-to-one 
correspondence bemeen the cs vibratioml modes and the glass bands with similar atom 
vibrations. Thus, the investigation of a glass of unknown structure is replaced by the study 
of the effects of disorder on the vibrational spectra of the cs with known structure. The 

for a particular material can be defined in different ways, but, as the short-range order 
dominates the Raman spectra of silicate glasses [SI, the most suitable cs in such materials 
would be the predominant structural units representing best on this scale the glass atomic 
configuration [14,15]. 

3.2. Effects of disorder 

In this section a method based on the lowest-order self-consistent perturbation theory is 
proposed to evaluate the shift and the broadening of phonon energy levels due to the 
structural disorder. The broadening of Raman lines of glasses originates from disorder- 
induced fluctuations both in the photoelastic coefficients and in the glass structure. 

In the U'-representation (U' are the cs eigenvectors and 1 numbers the cs vibrational 
modes), the diagonal elements of the averaged Green function of the glass can be presented 
as a perturbation series [16]: 

cl =gl  +gl(%)gf + k " c ( K k g k v k l ) g '  f'" (6) 

where !& are the disorder-induced perturbations to the CS dynamical matrix in the (I' 
representation and (. . .) denotes averaging over all possible atom configurations. In 
equation (6), 

k 

g'(o) = (0: - w2 - iw'y,)-] (7) 

is the diagonal element of the CS Green function in quasi-phonon approximation [16], and 
w, and M are the eigenfrequency and the linewidth, respectively, of the lth cs mode. 

To calculate the Green function matrix elements in equation (6) we assume the following. 

(i) The statistical distribution of K k  is symmetric and zero centred; thus, all averaged 

(ii) Following the second-order self-consistent perturbation theory the averaged terms 

(ui) The ( v p k  fin) terms with p = n are non-zero (i.e. the interaction between the modes 

The summation in the resulting series expansion of i7' is carried out by the standard 
diagram technique [17]. The basic diagram used by us is shown in figure I(a). The solid 
lines in this diagram represent g k ,  and the crosses connecting two lines the matrix elements 
V,,, while the dashed line connecting two crosses indicates that the corresponding matrix 

terms in the series containing odd numbers of V;, are equal to zero. 

can be presented as products of averaged pairs of Kr. 

p and k is not correlated with that between the modes k and n # p ) .  
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Figure 1. F e y "  diagrams used in calculations. 

elements are averaged in pairs. As shown in figure l(b), the sum of all diagrams originating 
from the basic diagram is 

GI(@) N g l ( W ) + g : ( W ) C ( l l l k V ~ i ) G k X ( W ) .  (8) 
k 

The summation of the series expansion of GI (equation (6)) can be formally performed by 
introducing the self-energy Z of the Etb mode: 

(9) GI(@) = g 1 m  + g r ( w ) E ( 4 G 1 ( 4 .  

In order to write equation (8) in the form (9) the self-energy should be presented by 

T(@)  = 11 - gl(w)?(W)l x ( & k v M ) g k ( o ) .  (10) 
k 

On the other hand, the sum of all connected diagrams originating from the basic diagram 
by replacing the internal gk-line and one of the external gl-lines with diagrams such as those 
shown in figure I is given again by (9). but in this case 

In what follows we refer to equations (10) and (11) as approximations A and B, respectively. 
It is intuitive that approximation B has to be more accurate since in this case more diagrams 
are taken into account in the perturbation series. 

From equations (7). (8) and (10) or (11) the disorder-induced line frequency shifts Ri 
and broadenings rl of the cs modes can be obtained in a self-consistent manner by keeping 
in mind, as usual [14], that 

(12) Re[Z(@l)] N RI =U: - 0: 

I"W)I N W l r l  = a i m  -vi). 

and 

(13) 

In equations (12) and (13), QI is the frequency of the maximum for the ftb band of the 
glass and Wi is its width. 

Using equations (9), (12) and (13), one obtains for the Ith glass band the following 
expression: 

Dl(o) = 2wIm[h(o)l N 20qW1[(w: - RI -U')'+ wfW:l-'. (14) 
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To use approximations A and B, one must define explicitly the quantities (KnVkl). 
Assuming that only nearest-neighbour atom interactions are dominant and that the matrix 
elements of the potential V in coordinate representation are independent of the types of atom 
(i.e. that Vas = E ,  (cm-') being referred to hereafter as random disorder parameter), 
one can write (v,:) in the form 

where (up) denotes summation over nearest-neighbour atoms only. 

4. Numerical results and discussion 

To illustrate the proposed theoretical method we calculated the Raman line positions, widths 
and intensities for two glasses in the system NazO-SiOz which is of great technological 
and geological importance and which has been intensively studied [18, 191. In calculating 
the spectra of both materials (Na20.SiO~ and Na20.1.22Si02 glasses) we used as cs the 
Si207 dimer which is the smallest structural unit suitable for describing the disorder in 
both the Si-O-Si bridging angle and the dihedral angle in this type of glass. The Si-Ob, 
distances were set equal to 1.67 A, and the Si-O,b, distances to 1.59 8, (Ob, and Onbr stand 
here for bridging and non-bridging oxygen atoms, respectively). All tetrahedral angles were 
set equal to the ideal value of QT = 109.2", and the Si-O-Si bridging angle to 135". In 
calculating the dynamical matrix of the Silo7 dimer we used the same values of the force 
constants as those used in [2]. 

The eigenfrequencies and the eigenvectors of the CS were found by standard normal 
mode calculations and the Raman line shifts R, and widths I& were calculated by the 
method described in section 3.2. 

Table 1. Frequency shifts AWN = S ~ N  - ON and specM linewidths WM of the Si207 dimer 
calculated in approximations A and E. N numbers the modes. 

Approximation 

A (& = 210 cm-I)' 

1V AU W AU 

B (6' = 175 em-')' 

3 1011 32 -19 59 -8 
4 1007 40 3 41 2 
5 1005 27 0 31 0 
6 891 22 2 24 3 
7 639 56 13 56 8 
8 490 73 46 98 15 
9 484 59 19 71 12 

10 456 91 -53 100 -9 
11 415 132 I 89 5 
12 414 107 18 86 5 
13 412 112 -20 86 -4 

a <, = p . 5 .  
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Figure 2 HH Raman specWm of the Si%@ dimer 
calculated using approximations A and B. 

Figure 3. HV Raman specmm of the S i l q  dimer 
calculated using approximations A and B .  

The calculations were carried out in approximations A and B and the results obtained 
in the spectral range above 400 cm-’ are given in table 1, figure 2 and figure 3. The 
low-frequency vibrational modes (frequencies below 400 cm-‘) cannot be well reproduced 
through these approximations for the following reasons. 

(i) The modes include vibrations between several structural units. 
(ii) The model does not account for possible tunnelling between different atomic 

configurations [21] and for relaxation processes [l]. 
(iii) The self-energy corrections fo these modes are quite large and the lowest-order 

perturbation theory is not valid in this case. This can be seen if one analyses equations (IO) 
and ( I I ) ,  keeping in mind that, according to equation (15). the quantities C,(K.V.I) are 
of the same order of magnitude for all modes. 

For simplicity all the cs linewidths y~ were set equal to 20 cm-’, a value close to that 
measured experimentally in meta-silicate crystals [IS]. Numerical calculations performed 
with other values of n do not change the conclusions given below. In both approximations 
the random disorder parameter was specified in such a way that the width of the peak at 
639 cm-’, with N = 7 in table 1, is close to 56 cm-I, a value corresponding approximately 
to that observed in the Raman spectra of vitreous NaxO.SiOz [le]. This peak is used as a 
reference because it is well separated from the other bands in the spectrum. 

The following general features caused by the disorder are evident from the numerical 
results. 

(i) The linewidtb of the vibrational bands increases on decreasing the mode frequency. 
(ii) The spec” of the initial SizO? dimer broadens as a result of the disorder. This is 

in accordance with the calculations performed by Mattis [21] in the Debye approximation 
for the eigenfrequencies. 
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(iii) The disorder affects in different ways the line positions and widths of the various 
vibrational modes. 

A comparison of the calculated HH and HV spectra with the experimental HH spectrum 
of NazO.Si02 (figure 4) and the experimental HV spectrum of Naz0.1.22SiOz (figure 5) 
indicates the following: 

(i) As expected (see section 3.2). the HH Raman spectrum calculated in approximation 
B fits the experiment better than that in approximation A. 

300 1000 
Frequency (cm- l )  

Figure 4. Experimentally measured HH Raman Figure 5. Experimentally measured 
specmrm of NazO.Si0z [la]. specmm of Naz0.1.22SiOz [19]. 

HV Raman 

(ii) In both approximations the calculated HH Raman spectra are in better agreement 
with the experiment than the HV spectra are for the following reasons. On the one 
hand, (V,.V,) should be carefully approximated for each particular glass, and averaged 
eigenvectors instead of unperturbed values should be used in calculating the polarizability 
tensor. On the other hand, the HV specmm is more sensitive to the approximations used 
than is the HH spectrum. This is seen from equations (3) and (5) as A, depends only on 
the components of eigenvectors along the mth bond, while E,’ does not and, thus, the latter 
is more sensitive to the approximations involved. 

In the case of strong disorder, i.e. of large differences between the structural units, 
Im(c) and Re(4) in equation (9) have to be functions of w and the assumption (iii) in 
section 3.2 would not be appropriate for extending this method to lower-frequency modes. 
Such studies are now in progress. 

5. Conclusions 

A theoretical model for calculating Raman spectra of glasses on the basis of the so-called CS 
is proposed. The effect of random disorder in the matrix elements of the nearest-neighbour 
interaction potential on the position and width of the Raman lines is analysed in two different 
approximations for the self-energy. The model was applied to two sodium silicate glasses 
modelled through a Si207 dimer as the CS. It is found that the disorder-induced broadening 
of the Raman lines depends strongly on this type of atom vibration of the dimer, but, in 
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general, the spectral line width decreases with increasing frequency in both approximations. 
In addition, a broadening of the spectnun as a whole is obtained as a result of the disorder, 
although some intermediate-frequency modes remain approximately unshifted in frequency. 

The proposed theoretical method, being much simpler in calculations than others 
reported in the literature, gives results in good agreement with experimental data. Improved 
approximations to this method will be employed in future to study various types of glass. 
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